
� � � ��� �� 	
� ��� � �� � �� � 	 �� �
� � � � �� � � � � �� � �
	 � �� � �� � � � � � � � � �

University of � ichigan
Kai-hui Chang, David A. Papa, Igor L. Markov and Valeria Bertacco

{changkh, iamyou, imarkov, valeria}@umich.edu

� � ���� �

� IWLS 2006 Programming Challenge

� OpenAccess Gear

� Fast simulation

� Oblivious vs. Event Driven

� Equivalence checking with simulation signatures

� Incremental Verification

� Custom vs. Native implementations

� Graphical User Interface extensions

� Plug-In interface

� 	
 � � � � � �� � � � � � � � �� � �� � � ��� � � �

� Logic optimization student programming
competition

� Must be implemented on OpenAccess and
should make use of OAGear infrastructure

� Judged according to correctness, efficiency,
importance, design, coding style, etc.

� 1st place was given to two teams

� Sat Sweeping package

� Fast simulation and equivalence checking

� Both entries are now part of OAGear

� � � � � � � � � � � � � �

� Release useful tools and libraries to
enable research

� Make OpenAccess a useful platform for
academia

� Provide common infrastructure for research and
benchmarking

� Adopt an open source development model

� Initiated and supported by Cadence Design
Systems

� � � �� �� � � � � � � � � � � ��

� Focus on four main components

� GUI: Layout and Schematic Viewer

� Static Timing Analysis

� Generic Standard Cell Placement Interface:
Capo API

� Benchmarks in OpenAccess Format

OpenAccess

GUI

Benchmarks

Timer

Placement
API

Capo

� �� ��� �! �� �� � �� � � �� � �� "�� � � � � � ! �� � �

� Built on OpenAccess for integration into other tools, e.g.
placement

� Two modes: Full timing analysis and incremental timing analysis

� Different models for wires: No wire delay, bounding box model;
can be extended easily to more accurate models

� Library formats: Cadence .tlf and Synopsys .lib

� Timing constraints: Subset of .sdc constraints

� Standardized timing reports

� Detailed documentation

Cell (DFFX1) {Cell (DFFX1) {
… …… …
pin(Qpin(Q) {) {
… …… …
timing() { timing() {
related_pinrelated_pin : "CK"; : "CK";
timing_sensetiming_sense : : non_unatenon_unate; ;
timing_typetiming_type : : rising_edgerising_edge; ;
cell_rise(7x7) { cell_rise(7x7) {

index_1 (“… …"); index_1 (“… …");
index_2 (“… …"); index_2 (“… …");
values (… …); values (… …);

} }
}}
}}

CELL(DFFX1CELL(DFFX1
… …… …
TIMING_Model(7x7TIMING_Model(7x7

((SplineSpline
(LOAD_AXIS …)(LOAD_AXIS …)
(INPUT_SLEW_AXIS …)(INPUT_SLEW_AXIS …)

data(… …)data(… …)
))

))
… …… …

Path(CK => Q … …)Path(CK => Q … …)
… …… …
Setup(D => CK … …)Setup(D => CK … …)
… …… …
))

#SDC constraint file#SDC constraint file
create_clockcreate_clock

––period 1 [period 1 [get_portsget_ports {CK}]{CK}]
set_input_delayset_input_delay 0.04 0.04

––clock CK [clock CK [all_inputsall_inputs]]
set_output_delayset_output_delay 0.02 0.02

––clock CK [clock CK [all_outputsall_outputs]]
set_driving_cell set_driving_cell

––lib_celllib_cell INVX2 [INVX2 [get_portsget_ports {G*5}]{G*5}]
set_loadset_load 0.01 [0.01 [get_portsget_ports {G2*}]{G2*}]

.tlf .lib .sdc Documentation

� �� ��� �! �� �� � �� � � �� � �� "�� � � � � � ! �� � �

Incremental timing analysis

� When a modification occurs:

� Mark the required arrival time of
nodes in the fan-in cone invalid

� Mark the arrival time of nodes in the fan-out cone
invalid

� Later if there is a query, update the timing
information

BUF1BUF1

ANDAND

… …

Standard Cell Library

oaTermoaTerm

oaGearTimerPointMasteroaGearTimerPointMaster (with arcs)(with arcs)

InstantiatedInstantiated

Inst1Inst1

Inst6Inst6

Inst5Inst5

Inst4Inst4

Inst3Inst3

Inst2Inst2

oaInstoaInst

oaInstTermoaInstTerm
oaGearTimerPointoaGearTimerPointoaTermoaTerm

oaGearTimerPointoaGearTimerPoint
oaGearTimerExtDelayoaGearTimerExtDelay

oaNetoaNet

Design

The timing information is stored
using the OpenAccess
extension mechanism
(oaGearTimerPoint, …)

FaninFanin conecone

Fanout coneFanout cone

ModificationModification

Query: update arrival
time, required arrival
time and slew rate

� � � � �� �� � � � � � ��� � �

� Open source placement tool

� Maintained at U. of Michigan

� http://vlsicad.eecs.umich.edu/BK/PDtools/

� Extended to use OpenAccess by the OAGear
CapoWrapper package

� Reads design data directly from OpenAccess

� Builds appropriate Capo data structures in memory

� Reads back Capo data structures and writes results to OA

� Example of integrating large mature programs

� Porting to a native codebase would require extraordinary
effort

� # � "�$� %� � �

� Easy to read and extend, built on Qt and OpenGL

� In the style and spirit of the OpenAccess standard

� Layout Editor displays block domain design data
directly from database

� Schematic Editor displays module domain design’s
logical connectivity

� Controller operates Capo API for on-demand placement

� Fast OpenGL rendering scales to very large designs

� “oaRegionQuery” accesses only relevant portions of
the design

Technical Capabilities

� � � �� � �� �� �� � �

OpenAccess

Timer

Func

New:
SAT Sweeping New:

Simulation
& Eq Check

Placer API

GUI: Bazaar

Benchmarks

Cudd

Capo

MiniSAT

And-Inverter
Graph

PlugIns
PlugIns

PlugIns
PlugIns

Decision
Diagram

&� � ��� �� � �� ��� �

� Bit-parallel simulation

� 32 or 64 patterns simulated simultaneously

� Special cases for common gate types

� Compiler can use CPU instructions to implement
AND, OR, etc.

� Levelize the circuit for faster topological
traversals

� �� � �� ��� � �� �� � � ��� � �

� Event-driven algorithm

� Evaluates only gates with events

� Suitable when the number of events is small

� Oblivious algorithm

� Evaluates all the gates

� Avoids overhead of event scheduling

� Suitable for random simulation

� � � �� � �� 	
 � �� �
 � �	 � �� �� �
� �� � �� ��� 	 �� �� 	 � �� � � �

� Easy to disprove equivalence with counter-
examples from simulation

� Signatures mismatch => not equivalent

� Signatures match => need more testing

� SAT-based equivalence checking is
performed when signatures match

� Counter-examples are returned

� To help understand the discrepancy
[J. Zhang et al. “Simulation and Satisability

in LogicSynthesis”, IWLS 2005]

� � � � � � � � �� ��' � � �(�� � ��� �

� User specified set of gates to EQ check

� Still need to add GUI support for this feature

� Use fast simulation to define Similarity Factor
between two netlists

� (Matching signals) / (number of signals)

� Signals are matching if simulation signature
appears in both circuits

� Small Similarity Factor means potential
discrepancy

� Reported in the GUI equivalence checker

� � � �� � �' �)�* � ��� � �� � � �� � � � �� ��� �

� Simulator originally used custom data
structures and file I/O

� Ported it to run natively on OpenAccess

� Observed significant slowdown in native impl.

� Primarily due to oaAppDef lookup time

� Spent significant effort optimizing native impl.

� Converted oaAppDef uses to
std::hash_map<oaNet*>

� Unable to match custom impl. performance

� � � �� � �� �)�* � ��� � �� +� � � �� � � �� ��, � ��

� Asymptotic improvement over original simulator

� Both new simulation algorithms scale linearly

� Both scale to realistic circuit sizes

� Custom data structures perform better for large inputs

� � � � � �� � ��# � � � �� � �� �(� � � �� �� � � � ��

� �� ��� � ��� �
 � � � � ��' ��

� �� � -� � �� � �� �(� � � �(� � �� � � � � � �$� %� � �

� Encapsulates
Bazaar’s interface

� Greatly simplifies
extending Bazaar

� Facilitates dynamic
loading of user code

� Decouples user code
from Bazaar

� � � � �� � �� � �

� Identified a major component of OAGear with poor
scalability

� Wrote new logic simulation engine using different
algorithms

� Reduces runtime by up to 100 times in our experiments

� Asymptotic improvement

� Leveraged simulator to speed up equivalence checking

� Defined new metric of circuit similarity useful in
incremental verication and debugging

� Extended OAGear©s graphical user interface, Bazaar

� Implemented and evaluated several use-cases

� Designed new infrastructure for creating user plug-ins

&� �� � � �	 � � . ��� �� � � � � �

� Convert existing GUI tools to PlugIns

� Layout Editor

� Schematic Editor

� More PlugIns!

� Waveform viewer for our logic simulator

� User contributions… (hint, hint!)

� Develop a communication mechanism between PlugIns

� Further integration of OAGear Tools into the GUI

� Buffer Insertion, Timer, Sat Sweeping, etc.

� More complete Tcl API for OAGear utilities

� Possibly an OAGear Router

� Ease of use improvements

! � � � . �/ � � 0

Questions?

More screen shots…

